ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Effect of mechanically induced modification on TiH₂ thermal stability

O.S. Morozova^{a,*}, T.I. Khomenko^a, Ch. Borchers^b, A.V. Leonov^c

- ^a Semenov Institute of Chemical Physics RAS, Kosygin st. 4, 119991 Moscow, Russia
- ^b Institute of Material Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen, Germany
- ^c Lomonosov Moscow State University, Chemical Department, Leninskie Gory, 119899 Moscow, Russia

ARTICLE INFO

Article history:
Received 11 August 2010
Received in revised form
30 December 2010
Accepted 7 January 2011
Available online 20 January 2011

Keywords:
TiH₂ as-milled
TiH₂/B and TiH₂/C nanocomposites
Ball-milling treatment
High-resolution transmission electron
microscopy
Interrupted temperature programmed
desorption
X-ray diffraction

ABSTRACT

Interrupted thermal desorption and X-ray diffraction techniques were used to study the effect of graphite and boron additives on non-equilibrium decomposition of mechanically activated commercial TiH_2 . The phase transformation sequence is described as a number of consecutive reactions corresponding to desorption peaks. The process is compared to non-equilibrium decomposition of commercial TiH_2 . The mechanical pre-treatment with additives significantly eases and accelerates decomposition of TiH_2 to $\alpha Ti(H)$, but hinders the stage of $\alpha Ti(H) \rightarrow \alpha Ti$ transformation. Only a small portion of pure αTi was detected for as-milled TiH_2 and TiH_2/B powders after the final TPD. No αTi was formed in the case of as-milled TiH_2/C .

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The major requirements for metal hydrides as hydrogen storage materials are the high hydrogen mass percentage, chemical stability and low-temperature fast hydrogenation and dehydrogenation kinetics [1]. The charging-discharging kinetics can be significantly improved by ball milling treatment of the powders in the presence of different additives [2–4]. Non-equilibrium heating conditions in the temperature programmed desorption (TPD) regime accelerate the metal hydride decomposition procedure. As was shown by the example of TiH₂, ball-milling with graphite, boron and h-BN additives [5,6] drastically decreases Ti-hydride decomposition temperature in TPD regime due to (1) powder size degradation and (2) appearance of new occupation sites available for H atoms in TiH₂ lattice modified by C, B, and N interstitial atoms, respectively. However, this non-equilibrium metal hydride decomposition is a poorly studied multi-stage process, the single stages of which can be accelerated or retarded by different pretreatment procedures [7].

E-mail address: om@polymer.chph.ras.ru (O.S. Morozova).

This study is focused on the mechanism of non-equilibrium decomposition of ball-milled commercial TiH_2 compared to that of original Ti-hydride [8], and on the effect of boron and graphite additives on this process. The phase transformation sequence is depicted as a number of consecutive and parallel reactions.

2. Experimental

Commercial TiH₂ (Aldrich, 99% pure, 325 mesh, S=0.32 m²/g), boron (amorphous, purity: 98.5%, S=5.4 m²/g) and graphite (highly oriented pyrolytic, purity: 99%, S=3 m²/g) powders were used. 16.6 mass% of boron or graphite was added to TiH₂. Milling was carried out for 66 min at the room temperature in a flow mechanochemical reactor with an average power intensity of 1 W/g in He flow. The TiH₂ decomposition was studied by temperature-programmed desorption (TPD) technique. Peaks were separated according to Lorentzian TPD curve fitting. The experimental details are published elsewhere [5]. The sample was heated up to the chosen temperature and then rapidly cooled by transferring the reactor from the heater to ice water. A fresh powder was used in each TPD run. XRD patterns were recorded after each TPD experiment using a Dron-3 diffractometer with Cu K α radiation. Quantitative X-ray phase analysis was performed applying a fitting procedure [9].

3. Results and discussion

Significant TiH_2 powder size degradation accompanied by partial hydrogen loss was observed during the mechanical treatment (Fig. 1). TiH_2 , TiH_2/C and TiH_2/B powders lost approximately

^{*} Corresponding author at: Department of Kinetics and Catalysis, Semenov Institute of Chemical Physics RAS, Kosygin st. 4, 119991 Moscow, Russia. Tel.: +7 495 939 7195; fax: +7 495 651 2191.

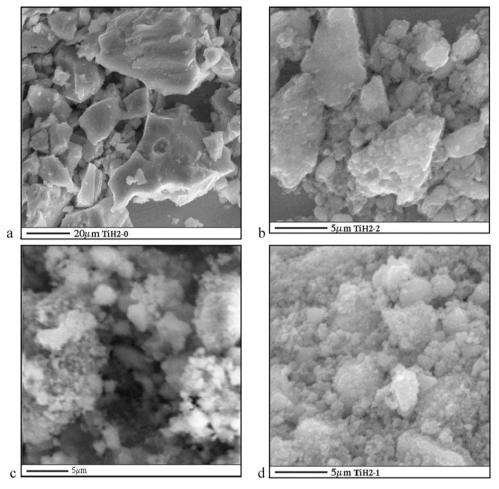


Fig. 1. SEM micrograph: (a) commercial TiH₂; (b) TiH₂ milled for 66 min; (c) TiH₂/B milled for 66 min; (d) TiH₂/C milled for 66 min.

 $\sim \! 5$ at.%, $\sim \! 6$ at.%, and $\sim \! 14$ at.%, respectively, after 66 min of milling. As a result, TiH_{1.9}, TiH_{1.88}/C and TiH_{1.72}/B emerged. Accordingly, the specific surface area increased from $0.32\,\text{m}^2/\text{g}$ to $6\,\text{m}^2/\text{g}$, $38.2\,\text{m}^2/\text{g}$ and $6\,\text{m}^2/\text{g}$ for TiH₂, TiH₂/C and TiH₂/B, respectively. Average grain size (from Scherer formula) was 13–15 nm. Fig. 2 shows TPD curves recorded for TiH₂ original and as-milled powders. Desorption in the low-temperature region is a special feature of as-milled powders: H₂ release was detected at 300–350 K, which is remarkably lower than original TiH₂ onset temperature. Hydrogen desorption during TPD was accompanied by structural transformations of TiH₂ up to total decomposition. Step-by-step correlation between both processes was studied by XRD, see Fig. 3.

The decomposition of original TiH₂ was recently studied in detail [8]. According to XRD data (Fig. 3a), the total decomposition of original TiH₂ was divided into three parts corresponding to three peaks that could be fitted to the TPD spectrum (Fig. 2a): (1) ε TiH₂ \rightarrow δ TiH_{2-x} transition at T_{max} = 743 K, (2) δ TiH_{2-x} \rightarrow α Ti(H) at T_{max} = 817 K and (3) α Ti(H) \rightarrow α Ti at T_{max} = 925 K. Finally, original ε TiH₂ was totally decomposed to α Ti. According to Ti–H phase diagram, the presence of β Ti (the high-temperature phase) should be postulated. But, it was not detected by XRD.

Figs. 2b and 3b show TPD spectrum and XRD patterns recorded for as-milled TiH₂. The low-temperature part of TPD curve was attributed to the fast transformation $\delta \text{TiH}_{2-x} \rightarrow \alpha \text{Ti}(\text{H})$. Approximately 50% of H₂ was desorbed during the heating to 723 K. As a result, $\sim 50 \, \text{wt.}\%$ of δTiH_{2-x} was decomposed to a solid solution $\alpha \text{Ti-9}$ at.% H. The lattice constant of residual δTiH_{2-x} decreased from $a = 0.444 \, \text{nm}$ to $a = 0.441 \, \text{nm}$ indicating a decrease in hydro-

gen content [10]. Further heating stimulated both $\alpha Ti(H)$ formation and progressive decrease of hydrogen content in δTiH_{2-x} . The high-temperature peak with T_{max} = 795 K is mainly reflecting the decomposition $\alpha Ti(H) \rightarrow \alpha Ti$. After final heating, the sample consists of about 83 wt.% of $\alpha Ti-6$ at.% H and αTi . The data obtained are in a good agreement with [7].

Figs. 2c and 3c show TPD spectrum and corresponding XRD patterns of TiH₂/B powder. TiH₂ decomposition started at about 300 K. The major low-temperature process was $\delta TiH_{2-x} \rightarrow \alpha Ti(H)$ accompanied by a decrease of hydrogen content in both δTiH_{2-x} and $\alpha Ti(H)$ lattices. Thus, heating to 689 K led to H₂ loss of \sim 47 mol.%. As a result, about 37 wt.% of hexagonal solid solution α Ti-11.4 at.% H (a = 0.298 nm, c = 0.481 nm) was detected. Such a hydrogen concentration exceeds the equilibrium concentration of 8.4 at.% H [10] by far. Besides, δTiH_{2-x} lattice parameter decreased from 0.444 nm to 0.442 nm due to a depletion of hydrogen in Tihydride. Heating to 742 K led to about 66 mol.% H₂ loss and further $\delta TiH_{2-x} \rightarrow \alpha Ti(H)$ transformation accompanied by narrowing and large-angle shift of XRD peaks of both phases. The hydrogen content in $\alpha Ti(H)$ solid solution decreased to 9–10 at.% (a = 0.297 nm, $c = 0.481 \, \text{nm}$), which still exceeds the equilibrium concentration. The high-temperature TPD peak ($T_{\text{max}} = 759 \,\text{K}$) reflects the decomposition $\delta TiH_{2-x} \rightarrow \alpha Ti(H) \rightarrow \alpha Ti$. The major phase present after heating to 822 K was a solid solution α Ti-7.4 at.% H (a = 0.297 nm; c = 0.477 nm). Only traces of δ TiH_{2-x} were detected. The high temperature slope reflects the transformation $\alpha Ti(H) \rightarrow \alpha Ti$: the final product of heating to 945 K contained traces of αTi and two hexagonal phases characterized by equal parameters $a = 0.296 \, \text{nm}$ and

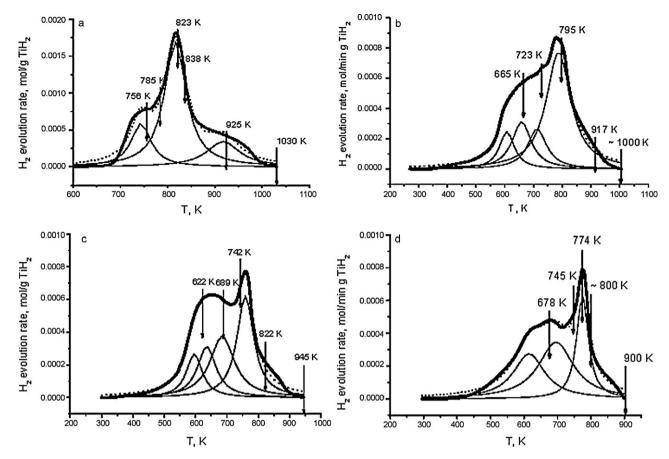


Fig. 2. TPD spectra recorded for (a) commercial TiH₂ [8] and as-milled: (b) TiH₂, (c) TiH₂/B, and (d) TiH₂/C. Vertical arrows point to temperatures of heating interruption.

different c = 0.471 nm and c = 0.478 nm, respectively. The first phase was attributed to α Ti–1.6 at.% H. Since hydrogen evolution was virtually finished, the second hexagonal phase was attributed to a solid solution α Ti(B), which was confirmed by XES technique [6]. Residual hydrogen was totally released after heating to 1073 K. The hexagonal phase α Ti–1.6 at.% H disappeared, and the hexagonal solid solution α Ti(B) and a rather dispersed cubic phase TiB (a = 0.421 nm) were detected.

Figs. 2d and 3d show TPD and XRD spectra for TiH $_2$ /C powder. TiH $_2$ decomposition also started at \sim 300 K by the transformation $\delta \text{TiH}_{2-x} \rightarrow \alpha \text{Ti}(\text{H})$, a solid solution with a non-equilibrium H content up to 9 at.%. At 774 K, the major phase was a solid solution $\alpha \text{Ti}(\text{H})$. Only traces of δTiH_{2-x} were detected. The high-temperature slope of TPD peak with T_{max} = 774 K reflected two processes: the evolution of residual hydrogen and the formation of Ti(C,H) solid solutions. According to mass balance and

XRD data, the final product formed at 900 K consisted of two hexagonal phases (α Ti – 8 at.% H and α Ti(C)) and a highly dispersed cubic phase Ti(C,H) in an amount of \sim 32 wt.%. Here we also suppose the carburization of Ti-hydride during hydrogen evolution from Ti-hydride bulk, which may be a result of TiH₂ lattice modification by C atoms under mechanical treatment [5]. Due to graphite excess, a carbon peak is present in XRD patterns.

As was mentioned above, the presence of βTi (the high-temperature phase) should be postulated according to Ti-H phase diagram. But, it was not detected by XRD in the samples cooled on different TPD stages.

Table 1 summarizes the data obtained in TPD experiments and the effective activation energies E_a of H_2 desorption calculated for the first and the last (high-temperature) peaks responsible for initial δTiH_{2-x} decomposition and $\alpha \text{Ti}(H) \rightarrow \alpha \text{Ti}$ transforma-

Table 1TPD parameters calculated on a base of Lorentzian fitting of TPD spectra.

Sample	Peak	H ₂ evolution [mol/g TiH ₂]	T_{max} [K]	E_a [kJ/mol]
TiH ₂	1	3.9×10^{-3} (19.5 mol.%)	743	219.5 ± 6.5
	2	1.23×10^{-2} (61.6 mol.%)	817	229.7 ± 7.2
	3	$3.8 \times 10^{-3} \ (18.9 \ mol.\%)$	920	216.1 ± 7.3
TiH ₂ as-milled	First	$2.04 \times 10^{-3} \ (10.9 mol.\%)$	607	107.9 ± 5.2
	Last	$1.13 \times 10^{-2} \ (56.4 mol.\%)$	787	126.3 ± 2.9
TiH ₂ /B as-milled	First	$2.28 \times 10^{-3} \ (14.3 \ mol.\%)$	596	65.4 ± 1.5
	Last	$5.6 \times 10^{-3} $ (35.2 mol.%)	759	170.4 ± 7.3
TiH ₂ /C as-milled	First	$5.46 \times 10^{-3} \ (\sim 29 \ mol.\%)$	614	35.7 ± 0.5
	Last	$4.88 \times 10^{-3} \ (\sim 26 \text{mol.\%})$	774	209.2 ± 11.9

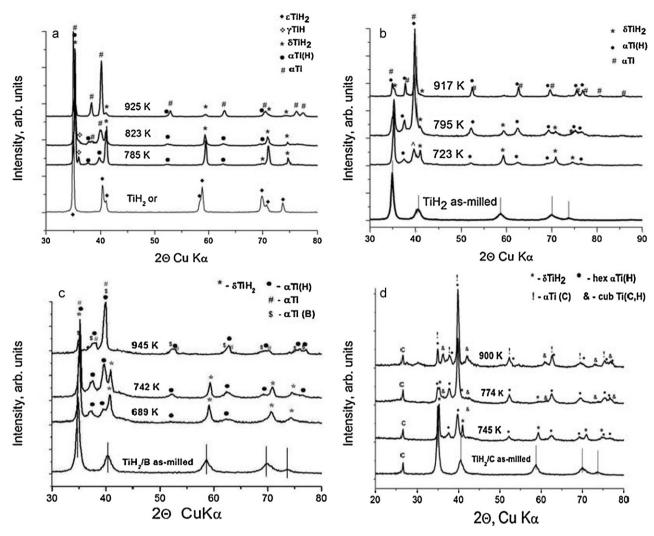


Fig. 3. XRD patterns recorded for TiH₂, TiH₂/B and TiH₂/C powders original, as-prepared and after TPD experiments depicted in Fig. 2: (a) commercial TiH₂, original and heated to 785 K (low-temperature slop), 823 K (T_{max} of the major peak) and 925 K (final decomposition) [8]; (b) as-milled TiH₂ original and heated to 723 K (low-temperature slop), 795 K (\sim T_{max} of the major peak) and 917 K (final decomposition); (c) as-milled TiH₂/B original and heated to 689 K (just after the low-temperature T_{max}), 742 K (nearby $T_{\rm max}$ of the high-temperature peak) and 945 K (final decomposition); (d) as-milled TiH₂/C original and heated to 745 K (after the low-temperature $T_{\rm max}$), 774 K ($\sim T_{\rm max}$ of the high-temperature peak) and 900 K (final decomposition).

tion, respectively. The processes include diffusion of H atoms from the bulk to the surface, surface recombination of H atoms and H₂ desorption itself. Nevertheless, our estimations are in a good agreement with experiment: E_a corresponding to the first process (at around 600 K) drastically decreases in the order TiH₂, TiH₂ as-milled, TiH₂/B, TiH₂/C. E_a corresponding to the second process significantly decreases for as-milled sample, but increases again for TiH₂/B, TiH₂/C. This effect is likely to be related to the growth of the fraction of highly distorted intergrain regions in nanocomposite TiH₂/B and TiH₂/C powders, where H mobility is much lower than in the crystalline grains [11] or caused by difficulties in H atoms recombination on the surfaces blocked by boron or carbon.

4. Conclusions

The mechanical activation of TiH₂ and, in particular, mechanical activation with graphite and boron additives enhances Ti-hydride decomposition kinetics to hexagonal solid solution T(H) because: (1) one stage of this process $\varepsilon \text{TiH}_2 \rightarrow \delta \text{TiH}_{2-x}$ was eliminated, (2) initial E_a of hydrogen desorption at low temperatures dramatically decreased and (3) B and C atoms modified activated δTiH_{2-x} lattice of to give αTi(B) or Ti-carbide-like phases. In contrast, it suppresses $\alpha Ti(H) \rightarrow \alpha Ti$ decomposition due to high concentration of structural defects and strong affinity of hydrogen to boron and carbon, reflected by a pronounced increase in effective E_q of hydrogen desorption.

Acknowledgements

This work was partly supported by Russian Foundation of Basic Research (Project No. 10-03-00942-a) and Ministry of Science of Russian Federation (Contract No 02.740.11.5176).

References

- [1] A. Zaluska, L. Zaluski, J.O. Ström-Olsen, Appl. Phys. A 72 (2001) 157–165.
- R.A. Varin, S. Li, A. Calka, D. Wexler, J. Alloys Compd. 373 (2004) 270-276.
- H. Imamura, N. Takashi, T. Fujinaga, J. Alloys Compd. 253-254 (1997) 34-37.
- C.Z. Wu, P. Wang, X. Yao, C. Liu, D.M. Chen, G.Q. Lu, H.M. Cheng, J. Alloys Compd. 414 (2006) 259-264.
- E.Z. Kurmaev, O.S. Morozova, T.I. Khomenko, Ch. Borchers, S.N. Nemnonov, Y. Harada, T. Tokushima, H. Osawa, T. Takeuchi, S. Shin, J. Alloys Compd. 395 (2005)240-246.

- [6] O.S. Morozova, T.I. Khomenko, A.V. Leonov, Ch. Borchers, E.Z. Kurmaev, A. Moewes, J. Alloys Compd. 483 (2009) 309–312.
- [7] V. Bhosle, E.G. Baburaj, M. Miranova, K. Salama, Mater. Sci. Eng. A356 (2003) 190–199.
- [8] Ch. Borchers, T.I. Khomenko, A.V. Leonov, O.S. Morozova, Termochim. Acta 493 (2009) 80–84.
- [9] E.V. Shelekhov, T.A. Sviridova, Met. Sci. Heat Treat. 42 (2000) 309.
- [10] F.D. Manchester, A. San-Martin, The H-Ti (hydrogen-titanium) system, in: F.D. Manchester (Ed.), Phase Diagrams of Binary Hydrogen Alloys, ASM International, USA, 2000, pp. 238–258.
- tional, USA, 2000, pp. 238–258.
 [11] A.Ye. Yermakov, N.V. Mushnikov, M.A. Uimin, V.S. Gaviko, A.P. Tankeev, A.V. Skripov, A.V. Solonin, A.L. Buzlukov, J. Alloy Compd. 425 (2006) 367–372